skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Scott, C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Thermal performance curves (TPCs) are important tools for predicting the sensitivity of populations to climate change. However, the interactive ways that temperature affects multiple life‐history components lead to different fitness outcomes. These interactions are poorly understood for modular animals, especially over the lifespan of individual colonies, which limits our capacity to connect physiological and demographic responses.The goal of this study was to assess and compare the relationships between temperature and different life‐history components in a modular animal to reveal the mechanisms underlying TPCs for fitness.We reared replicated clones of the marine bryozoanBugula neritinaacross a thermal gradient (16 values) ranging from 23 to 32°C, which reflected the upper thermal range of seasonal variation in the field. TPCs were constructed for survival (measured as zooids states within a colony), growth rate, development to reproductive maturity and reproductive capacity, which were measured over much of the realized lifespan expected under field conditions (~30 days).The effect of temperature was more acute on zooid states rather than whole‐colony survival, and increased temperature increased the frequency of polypide regression. Most colonies reached reproductive maturity up to ~30°C, but growth rate and reproduction decreased at temperatures beyond ~25°C. The decline in reproductive capacity over temperatures above ~25°C was then due to the decline in the production of zooids capable of brooding embryos and zooids transitioning to regressed states up until about 30°C and transitioning to dead state beyond that.Higher temperatures are often considered to affect reproduction by interfering with gametogenesis and post‐zygotic pathways, but in modular animals, changes in growth rate and module states could indirectly cause temperature sensitivity of reproduction. Our study has implications for the role of temperature in driving the sampled population's dynamics by setting the number of generations that occur during the time window when temperatures are conducive to reproduction. Our results also have implications for the generality and predictability of temperature on population persistence across unitary and modular animals. Read the freePlain Language Summaryfor this article on the Journal blog. 
    more » « less
    Free, publicly-accessible full text available April 27, 2026
  2. Abstract Palmer Deep submarine canyon on the western Antarctic Peninsula hosts permanent penguin breeding rookeries and is characterized by elevated chlorophyll‐a compared to the surrounding continental shelf. Particle residence times within the canyon are shorter than phytoplankton doubling times, which points to the ecosystem's productivity being tied primarily to advection of externally generated biomass into the canyon. This view is supported by recent observational studies showing alignment of attractive flow structures with phytoplankton patches. While residence times are short, they vary in space and are longer than the timescale for submesoscale instabilities with strong vertical motions (an inertial period), allowing for biological sources to be regionally or episodically important. Here we use measurements of ocean surface velocities (from high‐frequency radars) and chlorophyll (from satellites) to calculate the Eulerian, Lagrangian, and horizontal advection terms of the surface chlorophyll budget. The Lagrangian term (including biological sources) is generally comparable in magnitude to advection, but the latter is more important on the canyon's western flank. We then compare joint distributions of relative vorticity and strain conditioned on a particle's net chlorophyll change. In general, parcels experiencing a net increase (decrease) in chlorophyll experience greater cyclonic (anticyclonic) vorticity. Although high‐vorticity features significantly influence parcel motion, trajectories generally align with an estimate of the balanced flow, which is often characterized by a cyclone over the central canyon and eastern flank. Without subsurface data we cannot confirm whether the Lagrangian change truly indicates biological accumulation but we offer some interpretations. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  3. Free, publicly-accessible full text available September 1, 2026
  4. Scenarios to stabilize global climate and meet international climate agreements require rapid reductions in human carbon dioxide (CO2) emissions, often augmented by substantial carbon dioxide removal (CDR) from the atmosphere. While some ocean-based removal techniques show potential promise as part of a broader CDR and decarbonization portfolio, no marine approach is ready yet for deployment at scale because of gaps in both scientific and engineering knowledge. Marine CDR spans a wide range of biotic and abiotic methods, with both common and technique-specific limitations. Further targeted research is needed on CDR efficacy, permanence, and additionality as well as on robust validation methods—measurement, monitoring, reporting, and verification—that are essential to demonstrate the safe removal and long-term storage of CO2. Engineering studies are needed on constraints including scalability, costs, resource inputs, energy demands, and technical readiness. Research on possible co-benefits, ocean acidification effects, environmental and social impacts, and governance is also required. 
    more » « less
  5. Forested watersheds are instrumental in providing purified and reliable water to millions of people worldwide. The changing climate has increased the frequency and severity of global fire events. Forested watersheds and their ecosystem functions are greatly disrupted during fire activity. Postfire concerns in forested watersheds include unpredictable and potentially simultaneous alterations in source water quality and hydro-biogeochemical processes. The degree of fire severity can complexly modify water quality through the production of fire-transformed constituents on the burned forest floor (i.e., nutrients, metal(loid)s, dissolved organic matter, and the formation of disinfection byproducts). Correspondingly, fire severity and postfire rainfall patterns can refine hydro-biogeochemical processes that influence the transport of the fire-transformed constituents (i.e., vegetation function, soil structure, hydrological pathways, and microbial communities). Postfire alterations to water quality and hydro-biogeochemical processes introduce further complexity with varying temporal influence, which ranges from months to decades. As postfire water quality and watershed response research progresses, it is essential to homogenize interdisciplinary expertise to bridge knowledge gaps between fields ranging from forest ecology, hydrology, microbiology, and geochemistry. A multidisciplinary approach in wildfire research will facilitate a comprehensive perception of the diverse water quality risks associated with fire activity and mitigate fire concerns on a global level. 
    more » « less
    Free, publicly-accessible full text available July 29, 2026
  6. Hunt, John; Ravinet, Mark (Ed.)
    Abstract Dispersal can evolve as an adaptation to escape competition with conspecifics or kin. Locations with a low density of conspecifics, however, may also lead to reduced opportunities for mating, especially in sessile marine invertebrates with proximity-dependent mating success. Since there are few experimental investigations, we performed a series of field experiments using an experimentally tractable species (the bryozoan Bugula neritina) to test the hypothesis that the density, spatial arrangement, and genetic relatedness of neighbours differentially affect survival, growth, reproduction, paternity, and sperm dispersal. We manipulated the density and relatedness of neighbours and found that increased density reduced survival but not growth rate, and that there was no effect of relatedness on survival, growth, or fecundity, in contrast to previous studies. We also manipulated the distances to the nearest neighbour and used genetic markers to assign paternity within known mother–offspring groups to estimate how proximity affects mating success. Distance to the nearest neighbour did not affect the number of settlers produced, the paternity share, or the degree of multiple paternity. Overall, larger than expected sperm dispersal led to high multiple paternity, regardless of the distance to the nearest neighbour. Our results have important implications for understanding selection on dispersal distance: in this system, there are few disadvantages to the limited larval dispersal that does occur and limited advantages for larvae to disperse further than a few 10s of metres. 
    more » « less
  7. Abstract While the presence of morphologically cryptic species is increasingly recognized, we still lack a useful understanding of what causes and maintains co‐occurring cryptic species and its consequences for the ecology, evolution, and conservation of communities. We sampled 724Pocilloporacorals from five habitat zones (the fringing reef, back reef, and fore reef at 5, 10, and 20 m) at four sites around the island of Moorea, French Polynesia. Using validated genetic markers, we identified six sympatric species ofPocillopora, most of which cannot be reliably identified based on morphology:P. meandrina(42.9%),P. tuahiniensis(25.1%),P. verrucosa(12.2%),P. acuta(10.4%),P. grandis(7.73%), andP.cf.effusa(2.76%). For 423 colonies (58% of the genetically identified hosts), we also usedpsbAncror ITS2 markers to identify symbiont species (Symbiodiniaceae). The relative abundance ofPocilloporaspecies differed across habitats within the reef. Sister taxaP. verrucosaandP. tuahiniensishad similar niche breadths and hosted the same specialist symbiont species (mostlyCladocopium pacificum) but the former was more common in the back reef and the latter more common deeper on the fore reef. In contrast, sister taxaP. meandrinaandP. grandishad the highest niche breadths and overlaps and tended to host the same specialist symbiont species (mostlyC. latusorum).Pocillopora acutahad the narrowest niche breadth and hosted the generalist, and more thermally tolerant,Durusdinium gynnii. Overall, there was a positive correlation between reef habitat niche breadth and symbiont niche breadth—Pocilloporaspecies with a broader habitat niche also had a broader symbiont niche. Our results show how fine‐scale variation within reefs plays an important role in the generation and coexistence of cryptic species. The results also have important implications for how niche differences affect community resilience, and for the success of coral restoration practices, in ways not previously appreciated. 
    more » « less
  8. ABSTRACT Warming global temperatures have consequences for biological rates. Feeding rates reflect the intake of energy that fuels survival, growth and reproduction. However, temperature can also affect food abundance and quality, as well as feeding behavior, which all affect feeding rate, making it challenging to understand the pathways by which temperature affects the intake of energy. Therefore, we experimentally assessed how clearance rate varied across a thermal gradient in a filter-feeding colonial marine invertebrate (the bryozoan Bugula neritina). We also assessed how temperature affects phytoplankton as a food source, and zooid states within a colony that affect energy budgets and feeding behavior. Clearance rate increased linearly from 18°C to 32°C, a temperature range that the population experiences most of the year. However, temperature increased algal cell size, and decreased the proportion of feeding zooids, suggesting indirect effects of temperature on clearance rates. Temperature increased polypide regression, possibly as a stress response because satiation occurred quicker, or because phytoplankton quality declined. Temperature had a greater effect on clearance rate per feeding zooid than it did per total zooids. Together, these results suggest that the effect of temperature on clearance rate at the colony level is not just the outcome of individual zooids feeding more in direct response to temperature but also emerges from temperature increasing polypide regression and the remaining zooids increasing their feeding rates in response. Our study highlights some of the challenges for understanding why temperature affects feeding rates, especially for understudied, yet ecologically important, marine colonial organisms. 
    more » « less
  9. Abstract We present Atacama Large Millimeter/submillimeter Array observations of the [CI] 492 and 806 GHz fine-structure lines in 25 dusty star-forming galaxies (DSFGs) atz= 4.3 in the core of the SPT2349–56 protocluster. The protocluster galaxies exhibit a median L [ C I ] ( 2 1 ) / L [ C I ] ( 1 0 ) ratio of 0.94, with an interquartile range of 0.81–1.24. These ratios are markedly different to those observed in DSFGs in the field (across a comparable redshift and 850μm flux density range), where the median is 0.55, with an interquartile range of 0.50–0.76, and we show that this difference is driven by an excess of [Ci](2–1) in the protocluster galaxies for a given 850μm flux density. Assuming local thermal equilibrium, we estimate gas excitation temperatures of T ex = 59 . 1 6.8 + 8.1 K for our protocluster sample and T ex = 33 . 9 2.2 + 2.4 K for the field sample. Our main interpretation of this result is that the protocluster galaxies have had their cold gas driven to their cores via close-by interactions within the dense environment, leading to an overall increase in the average gas density and excitation temperature, as well as an elevated [Ci](2–1) luminosity-to-far-infrared-luminosity ratio. 
    more » « less
    Free, publicly-accessible full text available April 4, 2026